Detecting Extreme Mass-Ratio Inspirals using Time-Frequency Method

Linqing Wen

Max-Planck Institut fuer Gravitationsphysik
Albert Einstein Institut
Germany

In collaboration with

Jonathan Gair, Yanbei Chen, Stas Babak, et al.

Outline

- Characteristic of EMRIs
- Time-Frequency detection method
- Performance

- Discussion
 - Confusion problem
 - Parameter estimation

Extreme Mass-Ratio Inspirals (EMRIs)

Typical systems :

- white dwarfs, neutron stars, and stellar-mass black holes (0.6-50 Msun) onto $10^5 - 5 \times 10^6$ Msun supermassive Black Holes.

Large parameter space

~14 parameters, 7 intrinsic

- Spin S, and eccentricity are important

$$M$$
 , μ (S , λ_{LS}), e_0 percenter γ_0 initial phase ϕ_0

Fig. from Barack & Cutler 2004

Extreme Mass-Ratio Inspirals (EMRIs)

- Event rate is high
 - Estimated number of EMRI events is high
 (Gair, L. 2004; LIST Report, Barack L. et al.)
 - The event rate can be ~1000 in 3-5 years within ~ 3.5 Gpc for $10+10^6 Msun$ systems.
 - Problem with identifying events
 - galactic WD-WD binary and possibly EMRI background

EMRIs: data analysis perspective

- rms SNR at each frequency is small
 - Typically < 0.1

$$h \sim 6 \times 10^{-22} \left| \frac{r}{Gpc} \right|^{-1} \left| \frac{M}{10^6 Ms} \right|^{2/3} \frac{\mu}{10 M_s} \left| \frac{f}{5 mHz} \right|^{2/3}$$

 Detections based on simple Fourier transform are generally not possible

EMRIs: data analysis aspect

Merging frequency scaled inversely with mass

$$f_{M} \sim \frac{4.4}{M/10^6 M_{S}} \qquad mHz$$

Large number of frequency bins

$$N_f \sim f_M / df \sim 5 \times 10^5 \quad (for T = 3 \text{ yr}, f_m = 5 \text{ mHz})$$

 $SNR(d \sim 1 \text{ Gpc}) \sim 100$

Extreme Mass-Ratio Inspirals (EMRIs)

$$SNR_n^2 \propto \frac{\dot{E}(f_n)}{\dot{f}_n f_n S_h(f_n)} \Delta(lnf_n)$$

Orbits are typically eccentric

- e ~0.1-0.7, signal power spreads into many harmonics
- At e>0.1, especially at low-f, SNRs at higher harmonics become important due to noise response

Extreme Mass-Ratio Inspirals (EMRIs)

- Complicated waveform
 - Three Characteristic frequencies
 - radial frequency
 - GR periastron precession
 - orbital plane precession from S-L coupling
 - Modulation from LISA's orbital motion
 - Amplitude
 - Frequency

(Cutler 98, Barack & Cutler 2004)

EMRIs: Computational Challenge

- Fully coherent detection is impossible
 - Waveform can eventually be calculated
 - Optimal: best in MLR/SNR
 - impossible computational cost
 - $\sim 10^{30} 10^{40}$ templates needed for fully coherent search of 3 year of data
 - $\sim 10^{12}$ templates/yr possible for 50 Tflop computer cluster

(Cutler's talk, Gair, L. et al 2004, LIST Report)

EMRIs: Alternative Method

- Semi-coherent method
 - Search segments of data
 coherently but add incoherently

- ullet Search for 10^{10} templates coherently
 - 2wk coherent search for 3 yr data
 - Use all available computer power
 - Then add powers along ~1e5 tracks
- SNR required increased by a factor of ~2 from full coherent one at FAP~ 0.01

(Cutler's talk. Gair et al. 2004)

EMRIs: Time-Frequency Methods

- incoherent method
 - No templates
 - Search for maximum power density in t-f plane
 - Windowed FFT for every two weeks' data
 - For each point in t-f plane, given a rectangular box, calculate total power weighted by noise

$$P(i,k) = 2 \left| h_k^i + n_k^i \right|^2 / \sigma_{ik}^2$$

$$\rho(i,k) = \sum_{a=i-n/2}^{a=i+n/2} \sum_{b=k-l/2}^{b=k+l/2} P(i,k)$$

$$<\rho(i,k) > = \rho_{MF} + 4m$$

EMRIs: Time-Frequency Methods

- Robust/popular
 - Signal increases by a factor ~N, noise by sqrt(N)
 - widely used in X-ray astronomy
 - e.g., search for kilo-hertz QPOs in LMXBs
 - Density mapping method is the same as in cosmological N-body simulation to pick out clusters
 - In LIGO data analysis, it is called "excess power" method
 - Simple and fast
 - run-time~ minutes, Matlab code: tens of lines

Simulated Waveforms

- Kludge Waveform
 - Solve exact Kerr geodesic equations
 - PN formula to evolve conservative quantities
 - Quadrupole GW waveform
 - Convolved with LISA orbital amplitude and Doppler modulation
 - Glampedakis, Hughes, Kennefick (2002) Gair et al (2005)

Ilustration of a bright 10+1e6 Msun EMRI in t-f plane (at 250 Mpc)

"Raw" T-F Powers

T-F Power density SNR

EMRIs: Time-Frequency Methods (typical case at 0.5, and 1 Gpc)

M=1e6+10, e0=0.4, a=0.8

EMRIs: Time-Frequency Methods (typical case at 1.4, 2 Gpc)

M=1e6+10, e0=0.4, a=0.8

Monte-Carlo Results: Detection Rate vs False Alarm Probability

At d=2 Gpc, FAP =0.01, detection rate $\sim 60\%$

EMRIs: Time-Frequency Methods

- Typical case, reach 2 Gpc for FAP=0.01
 - Detection based on power density from ~2 wks' data, ~0.2 mHz frequency band

(Wen & Gair 2005)

- Monte-Carlo simulation performed for 26 possible systems (different M, m, S, e0, i, theta_s, phi_s, theta_k, phi_k)
 - Detected to 1-3 Gpc, smaller f_dot is better

(Gair & Wen 2005)

Label	Parameters	Initial p/M	SNR
A	See text	10.3	155
В	$M=3 imes10^5 M_{\odot}$	18.25	119
С	$M=3 imes 10^6 M_{\odot}$	6.5	110
D	$m = 0.6 M_{\odot}, M = 3 \times 10^{8} M_{\odot}$	9.405	14.1
E	$m=0.6M_{\odot}$	5.83	21.0
F	$m = 0.6 M_{\odot}, M = 3 \times 10^6 M_{\odot}$	4.511	15.7
G	$m=100M_{\odot}$	17.78	382
H	a = 0.95M	10.07	170
I	a = 0.5M	10.74	132
J	a = 0.1M	11.31	108
K	$e_0 = 0$	10.42	147
L	$e_0 = 0.1$	10.41	150
M	$e_0 = 0.25$	10.385	151
N	$e_0 = 0.7$	9.71	159
0	$\iota = 0$	9.925	223
P	$\iota = 30^{\circ}$	10.1	189
Q	$\iota = 60^{\circ}$	10.59	115
R	$\iota=120^{\rm o}$	12.126	57.7
S	$\iota=150^{\rm o}$	12.82	79.6
Т	$\iota = 180^{\rm o}$	13.11	87.0
ExtrinsA	$\cos(\theta_S) = 0.99$	10.3	117
ExtrinsB	$\cos(\theta_S) = 0.01$	10.3	162
ExtrinsC	$\cos(\theta_K) = 0.99$	10.3	118
ExtrinsD	$\cos(\theta_K) = 0.01$	10.3	146
ExtrinsE	$\phi_K = 0.01$	10.3	111
ExtrinsF	$\phi_K = 2.$	10.3	111

Table 1. Parameters and signal to noise ratios at 1 Gpc for trial waveforms. Unspecified parameters are the same as source "A", as given in the text.

	$0.8~\mathrm{Gpc}$	$1.2~\mathrm{Gpc}$	$1.4~\mathrm{Gpc}$	2 Gpc	3 Gpc
A	1	1	1	0.60	0.02
В	1	1	0.93	0.04	0.01
C	1	1	1	0.10	0.02
D	0.00	0.00	0.02	0.01	0.01
E	0.01	0.00	0.00	0.02	0.00
F	0.03	0.02	0.02	0.01	0.02
G	1	1	1	1	1
H	1	1	1	0.96	0.01
I	1	1	1	0.17	0.00
J	1	1	0.85	0.02	0.01
К	1	1	1	1	0.51
L	1	1	1	1	0.29
M	1	1	1	1	0.07
N	1	1	0.99	0.22	0.00
0	1	1	1	1	0.63
P	1	1	1	1	0.10
Q	1	1	0.85	0.03	0.00
R	0.8	0.02	0.04	0.00	0.01
S	1	0.53	0.1	0.02	0.02
Т	1	0.96	0.36	0.01	0.01
ExtrinsA	1	1	0.65	0.02	0.01
ExtrinsB	1	1	1	0.94	0.03
ExtrinsC	1	1	0.82	0.03	0.02
ExtrinsD	1	1	1	0.31	0.02
ExtrinsE	1	0.99	0.57	0.03	0.02
ExtrinsF	1	0.99	0.62	0.02	0.02

Table 2. Detection rates for trial waveforms at various distances. Thresholds were set using the numerical probability distributions, and with an overall search false alarm probability of 1%.

EMRIs: Time-Frequency Methods Comparison to (semi) coherent Method

Required SNR at the same FAP

$$\rho_{TF} \sim (m)^{1/4} \rho^{1/2}$$
 $\rho(FAP \sim 1\%) \sim 15$

- Best case: m=1, signal concentrates in one t-f bin
 - e.g., sinusoidal signals/WD-WD inspirals
- Worst case, signal spreaded into all bins
- Performance is source dependent
 - Semi-coherent method searches
 - ~ 1e15 templates -> larger FAP
 - T-f method is incoherent
 - but much smaller numbers of searches

Improvement on Detection

- So far detections are based on max. of one blob
 - Works very well
 - Detection EMRIs up to 1-3 Gpc
- Improving t-f method
 - Important to find the track
 - summing all powers on track
 - Worthwhile to search through directions
 - Take care of some confusion sources
 - Including known info of waveform

WD-WD Confusion Problem

 Can always apply other technique to remove binaries

- e.g., g-clean, Radon transform, MCMC
- Information extracted from t-f method:
 - Frequency/time spread
 - Directional information
 - T-f Track -> <f(t)>
 - curved track vs straight ones
 - Power-> < dE(t)/dt >

1. Zoom-in with different t-f boxsizes

- Calculate power density with different boxsizes
- For different types of signal, max SNR most likely occurs at different boxsizes = camera zoom-in

2. Decoding Directional Information

$$SNR^2 = (A\vec{h}|A\vec{h}) = s_1^2 h_1 + s_2^2 h_2$$

 $\vec{h}^T = v^T (h_+, h_x)^T, \quad v^T v = I$

- Detections sensitivity can be ranked by (s1, s2)
 - Red region are more sensitive to GW signals
 - powers from these
 "designated" area should
 be added with priority

0-th order approximation(Cutler 98

Decoding directional information

- Realistic LISA configuration encodes more directional information
- At higher f, it is equivalent to 3 detectornetwork
- high power at each source direction
- corresponding low power in null-stream of that direction (high f)

For one source direction

- Src from different direction has its own bright "blob" and dim spot in null-stream all sky map
- Brighter ones are selected first
- Worthwhile to search over directions

Considerations on Parameter Estimation

t-f method provided data points

```
track \rightarrow f_d(t_i), powers \rightarrow dE/dt(t_i) (i=1,N) (averaged)
```

- Also provide information on time-frequency spread of powers, harmonics/beats
- 2N data
- Assuming we know the relations between fn
- In case of PN formula, need to fit N+Nc parameters
 - In principle, just least-square fit parameters if N>Nc above threshold
 - Nc~7 $e(t_i)$, (i=1,N), M, μ , $S\cos\lambda$, n, ...,
- For multi-EMRIs: also least-square fit

Conclusion

- Time-frequency method works pretty well
 - As the 1st step of the hierarchical search
- Current implementation can be further improved in detection/confusion problem
 - By finding the tracks
 - e.g., Hough transform
 - By search over source directions
- Parameters can be estimated/constrained
 - Need information that represent dominating f, and dE/dt in an averaged sense,

LISA's Directional Sensitivity

Two orthogonal signal components
-for a given sky direction

$$SNR^{2} = (A\vec{h}|A\vec{h}) = s_{1}^{2}h_{1} + s_{2}^{2}h_{2}$$
where, $\vec{h}^{T} = (h_{1}, h_{2})^{T} = v^{T}(h_{+}, h_{x})^{T}$, $v^{T}v = I$

$$S_{1}$$

$$S_{2}$$

$$S_{2}$$

$$S_{3}$$

$$S_{2}$$

$$S_{4}$$

$$S_{2}$$

$$S_{3}$$

$$S_{4}$$

$$S_{5}$$

$$S_{2}$$

$$S_{5}$$

$$S_{2}$$

$$S_{4}$$

$$S_{5}$$

$$S_{6}$$

$$S_{6}$$

$$S_{6}$$

$$S_{7}$$

$$S_{8}$$

$$S_{8}$$

$$S_{8}$$

$$S_{8}$$

$$S_{8}$$

$$S_{8}$$

$$S_{8}$$

$$S_{9}$$

$$S_{1}$$

$$S_{2}$$

$$S_{1}$$

$$S_{2}$$

$$S_{2}$$

$$S_{3}$$

$$S_{4}$$

$$S_{1}$$

$$S_{2}$$

$$S_{2}$$

$$S_{3}$$

$$S_{4}$$

$$S_{5}$$

$$S_{6}$$

$$S_{7}$$

$$S_{8}$$

$$S$$

See also Rajesh et al (2003)

 $(\phi_s = 60^\circ, \theta_s = 57^\circ (Ecliptic))$